Interactive Demonstration of Pressure Regulators in Action


Controlling the pressure levels is one of the challenges many instrumentation and automation engineers face. Pressure regulators are often used for this task, since they are self-regulating and don’t require a control loop connected to the plant distributed control system (DCS).

I saw this post, Pressure Regulator Animations by Emerson’s Michael Calaway in the Emerson Exchange 365 community.

He shares links to some pressure regulator animations, a couple for the MR95 Pressure Reducing Regulator and one for a gas delivery over- and under-pressure configuration.

Let’s look at the second one with an EZH pressure regulator with a monitor in series. It is an interactive demonstration helping to show various scenarios of how pressure is maintained even in failure situations. You’ll need to view it on a device that supports the Flash file format.

Continue Reading

Answering Common Questions about Wireless Instrumentation


As technologies advance through the adoption phases and into mainstream use, a common set of questions usually emerges. For example, as the IEC 62591 WirelessHART communications standard has moved from its introduction to the market in 2007 to present day, its use has increased widely across industries, geographies and applications. We’ve chronicled many of these stories in the wireless category of this blog.

Emerson's Dale Perry

WirelessHART-Q-AI share this background to highlight a great EE Publishers article, Q&A – Wireless technology in process applications. The question and answer session is with Emerson’s Dale Perry who addresses common questions about WirelessHART, a:

…self-organising protocol utilising a time-synchronised, self-organising, and self-healing mesh architecture.

From the article, I’ll highlight a few of the most common questions I see in my travels through the social networks, and leave the rest for you to read if you’re interested.

How far the wireless communications can travel is a common question. Dale responds:

The transmission distance between two wireless devices is a function of the antenna type and the distance the antenna is above the ground or the structure of the installation. The specified distance is 225 m for a standard antenna mounted 1,8 m above the ground/structure. Optional high gain antennas with transmission distances up to 1 km are available and should be mounted a minimum of 3,4 m above the ground/structure. Since WirelessHART is a self-organising mesh technology with each radio able to communicate with all other radios, networks can cover much longer distances through “hopping” whereby transmitters closer to the gateway relay data for those further away.

Battery life for wireless instrumentation is another common question. He explains: Continue Reading

Modernizing Tank Gauging Systems via Emulation


Here in the US, we read many stories of oil tanks being filled to the brim with increased production from shale sources and federal law barring export. Whether in the US or anywhere across the globe, managing and reporting on the levels in these tanks require accurate measurement. Also, given the importance of these measurements in safety and environmental protection, accuracy and reliability is required, especially for older facilities with manual or aging tank gauging systems.

Emerson's Hans Westerlind

Hans Westerlind
Marketing Manager

Tank-Gauging-EmulationIn a Tank Storage magazine article, Gauge Emulation: a cost-effective solution for tank gauging upgrade projects, Emerson’s Hans Westerlind shares how technology advancements make it possible to incrementally replace outdated mechanical level measurement devices with accurate electronic devices.

Older tank gauging systems often had proprietary communications between the measurement devices and the control system:

This electrical interface and protocol software was more or less specific to one manufacturer. Level gauges or temperature devices from another manufacturer could therefore not be connected to this bus. If the user wanted an extension of the system, a partial upgrade or an exchange of a number of tank gauging units, the only practical alternative was to purchase them from the same supplier as before.

Also these older measurement technologies:

…consist of mechanical level gauges as float or servo gauges. It is not uncommon that users have to accept very high maintenance costs, poor performance and unreliable measurements…

At a refinery or large tank farm, it can be a difficult undertaking to modernize the tank gauging systems: Continue Reading

Optimizing Delayed Coker Operations with Advanced Process Control


A refinery produces many products, one of them petroleum coke. AFPM defines it:

Petroleum coke (petcoke) is one of many valued consumer products produced during the oil refining process. Crude oil is processed into gasoline, diesel fuel, jet fuel, lubricating oils and waxes, leaving some residual crude that usually undergoes additional processing. The crude residue may be further refined by a process known as coking to produce transportation fuels as well as petcoke, which has a variety of uses as an alternative, cost-effective fuel.

The history of petcoke goes back to the 19th century:

Petroleum coke was first made in the 1860s in the early oil refineries in Pennsylvania which boiled oil in small, iron distillation stills to recover kerosene, a much needed lamp oil. The stills were heated by wood or coal fires built underneath them, which over-heated and coked the oil near the bottom. After the distillation was completed, the still was allowed to cool and workmen could then dig out the coke and tar.[7]

Emerson's James Beall

I share this because I heard a great story from Emerson’s James Beall about the application of model predictive control on a delayed coker unit. Wikipedia describes this unit:

A delayed coker is a type of coker whose process consists of heating a residual oil feed to its thermal cracking temperature in a furnace with multiple parallel passes. This cracks the heavy, long chain hydrocarbon molecules of the residual oil into coker gas oil and petroleum coke.[1][2][3]

From the same Wikipedia entry, you can see some of the complexity in this unit: Continue Reading

Simplifying Hazardous Area Instrumentation Inspections


If your process includes hazardous locations, you can appreciate the extra care that must be taken with the wiring to instrumentation located in these areas. And ongoing testing of these transmitters and final control elements poses challenges as well.

Emerson's Ian MacDonald

Ian MacDonald
Wireless Consultant

Wireless-Inspect-InstrumentIn a Control Engineering article, Inspecting instruments installed in hazardous locations, Emerson’s Ian MacDonald describes how wireless instrumentation helps avoid these wiring and ongoing testing challenges. Ian opens describing some of these installation challenges:

Field transmitter wiring requires wiring, conduits, cable trays, field junction boxes, and marshalling cabinets. If the instrument is 4-wire, it must have separate power wiring. All wiring systems must meet the requirements of IEC 60079 [Explosive Atmosphere Standards] for the type of protection that the circuit is certified for. This could be “EX ia” for intrinsically safe, “Ex d” for explosion-proof, or one of the other types of protection permitted.

He notes how this standard applies to installation and ongoing maintenance: Continue Reading