

Industrial IoT

Realize Industrial Internet of Things Benefits in Your Plant Before 2016 is Up

Jonas Berge Director, Applied Technology Emerson Process Management Singapore

Topics Covered

- Plant challenges
- Gain new abilities with IIoT
- IIoT deployment requirements

Areas of Major Challenges

Reliability & Maintenance - Typical Applications

 Improve equipment reliability and process availability, integrity, reduce maintenance cost

Condition Monitoring for All Essential Assets – Not Just Turbines & Compressors

- Critical equipments already have condition monitoring
 - Expensive turbines, process compressors, and large pumps
- Balance of equipments are not monitored
 - Many are still essential to operation
- Manual data collection
 - Not frequent enough
- Also need condition monitoring

From Routine Manual Data Collection to Automatic Data Collection and Analysis

- Able to reduce manual data collection
 - Vibration
 - Temperature
 - Acoustic noise (valve leaks)
 - Acoustic noise (steam traps)
 - Corrosion
 - Power consumption
- Result
 - Fewer inspection/test rounds
 - Reduce exposure of people to hazards

Complementary Vibration Monitoring Solutions: milliseconds to months

Periodic Inspection Misses The Point - of Failure

- Many issues only become noticeable close to the point of failure
- Manual inspection often misses this sudden degradation

Onboard Vibration Analytics Provide Early Warning

- Easy to sort equipment in Good condition from those that are Bad
- Effective maintenance and turnaround planning

Equipment Condition Dashboard - Focus Attention Where It Is Needed

Energy Efficiency - Typical Applications

 Reduce overconsumption, loss, and carbon emissions

Technical White Paper Available

HS&E - Typical Applications

 Improved situational awareness to reduce incidents and response time, CO2 emissions

Remote monitoring services less common: on-prem

Technical White Paper Available

Process Operation Productivity - Typical Applications

Automate manual tasks

Technical White Paper Available Remote monitoring services less common: on-prem

From Periodic Manual Data Collection to Automatic Data Collection

- Able to reduce field work
 - Dial gauges
 - Sight glasses
 - Variable area flow meters
 - Dip sticks
- Result
 - Fewer field operator rounds
 - Reduce exposure of people to hazards or bad weather

IIoT Architectures - Often Bypass DCS

3G Mobile Backhaul Architecture

 Make sure cloud data center provider and mobile telecom provider have established a connection

An Independent System

- The remote monitoring system is totally isolated from the plant control system
- No access to the plant's control system can be gained through the remote monitoring system

Non-Critical System

- The remote monitoring system is not used for control or safety
- Automatic data collection and analysis
- Even if 3G network is congested or even down it does not impact the process

Non-Process Data

- The data used for condition monitoring is simple equipment diagnostics
 - Non-confidential

20

- Plants traditionally share manually collected maintenance data with service providers
- Confidential process data is not part of the remote monitoring system

INDUSTRIAL IoT (IIOT) Protocols

- Industrial strength network: FOUNDATION fieldbus
 - High noise tolerance
 - Long distance
 - Spur topology
 - Two-wire power
 - Rugged connectors
 - Intrinsic safety, non-incendive
- Industrial strength wireless network: WirelessHART
 - Full multi-hop multi-path mesh
 - Self-organizing
- Well defined application protocol
 - Standard data types, parameters, blocks, semantics
 - Device profiles for process instrumentation
 - Device description

IEC 61784-1 profile 1/1

IEC 62591

Business Transformation

New business models

TRANSFORMING BUSINESSES, GOVERNMENT AND SOCIETIES

Business Models

	Traditional	Business Model A	Business Model B	Business Model C	Business Model D
Owns and	Client	Client	Client	Service	Service
manages the				Provider	Provider
instrumentation					
Does the	Client	Client	Service	Service	Service
monitoring			Provider	Provider	Provider
Performs the	Client	Service	Service	Service	Client
maintenance		Provider	Provider	Provider	

Chemical Plant in Singapore

- 148 Traps monitored
- 34 identified as failed (23%)
- Bypassed traps reduced from 50% to 4%
- Flange leak & bypass valve passing identified
- 7% steam savings

Phased Approach to Deployment - Do This in Your Plant Before 2016 is Up

- Step 1 Plant-wide Digital Sensor Networks
- Step 2 Instrumenting Assets
- Step 3 Deploy Predictive Analytics Software Onpremise
- Step 4 Review Work Processes
- Step 5 Enable Private IntRAnet of Things
- Step 6 IntERnet of Things Business Models

Plant Modernization Audit

- No site walk down required
- Areas reviewed
 - Reliability & Maintenance
 - Energy Efficiency & Loss Control
 - Health, Safety, &
 Environmental (HS&E)
 - Process Operations
 Productivity
- Report generated

- How many pumps are critical and should be monitored?
- Are mechanical seals monitored as per API standard 682, edition 2014 (using transmitters)?
- How many fans/blowers are critical and should be monitored?
- How many ACHEs are critical and should be monitored?
- How many compressors are critical but not yet monitored (e.g. compressed air)?
- How many cooling towers are critical and should be monitored?
- How many pipe lines experience corrosion and should be monitored?
- How many maintenance round (portable) vibration, temperature, steam trap, valve leak, and corrosion test points should be automated?

Summary

- Solve plant challenges; automate data collection
 - Reliability & maintenance
 - Energy efficiency & loss control
 - HS&E
 - Productivity
- Gain new abilities with IIoT
 - Condition monitoring
 - Performance monitoring and energy management
 - Enjoy remote monitoring service
- IIoT deployment requires:
 - Industrial strength and interoperability
 - Separation
 - Remote monitoring service; teleco-cloud connection
 - Real-time analytics

Let's Stay Connected

Jonas Berge jonas.berge@emerson.com

Linked 🛅 🛛

http://www.linkedin.com/in/smartdigital

http://www.ceasiamag.com/2016magazines/march-april-2016/

EMERSON EXCHANGE 365

Learn. Share. Network.

http://community.emerson.com/members/jonas.berge/